Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Emerg Infect Dis ; 30(4): 817-821, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38526320

RESUMO

Orthohantaviruses cause hantavirus cardiopulmonary syndrome; most cases occur in the southwest region of the United States. We discuss a clinical case of orthohantavirus infection in a 65-year-old woman in Michigan and the phylogeographic link of partial viral fragments from the patient and rodents captured near the presumed site of infection.


Assuntos
Infecções por Hantavirus , Orthohantavírus , Feminino , Humanos , Idoso , Michigan/epidemiologia , Filogeografia , Síndrome
2.
Lancet Microbe ; 5(2): e109-e118, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38278165

RESUMO

BACKGROUND: The Democratic Republic of the Congo has had 15 Ebola virus disease (EVD) outbreaks, from 1976 to 2023. On June 1, 2020, the Democratic Republic of the Congo declared an outbreak of EVD in the western Équateur Province (11th outbreak), proximal to the 2018 Tumba and Bikoro outbreak and concurrent with an outbreak in the eastern Nord Kivu Province. In this Article, we assessed whether the 11th outbreak was genetically related to previous or concurrent EVD outbreaks and connected available epidemiological and genetic data to identify sources of possible zoonotic spillover, uncover additional unreported cases of nosocomial transmission, and provide a deeper investigation into the 11th outbreak. METHODS: We analysed epidemiological factors from the 11th EVD outbreak to identify patient characteristics, epidemiological links, and transmission modes to explore virus spread through space, time, and age groups in the Équateur Province, Democratic Republic of the Congo. Trained field investigators and health professionals recorded data on suspected, probable, and confirmed cases, including demographic characteristics, possible exposures, symptom onset and signs and symptoms, and potentially exposed contacts. We used blood samples from individuals who were live suspected cases and oral swabs from individuals who were deceased to diagnose EVD. We applied whole-genome sequencing of 87 available Ebola virus genomes (from 130 individuals with EVD between May 19 and Sept 16, 2020), phylogenetic divergence versus time, and Bayesian reconstruction of phylogenetic trees to calculate viral substitution rates and study viral evolution. We linked the available epidemiological and genetic datasets to conduct a genomic and epidemiological study of the 11th EVD outbreak. FINDINGS: Between May 19 and Sept 16, 2020, 130 EVD (119 confirmed and 11 probable) cases were reported across 13 Équateur Province health zones. The individual identified as the index case reported frequent consumption of bat meat, suggesting the outbreak started due to zoonotic spillover. Sequencing revealed two circulating Ebola virus variants associated with this outbreak-a Mbandaka variant associated with the majority (97%) of cases and a Tumba-like variant with similarity to the ninth EVD outbreak in 2018. The Tumba-like variant exhibited a reduced substitution rate, suggesting transmission from a previous survivor of EVD. INTERPRETATION: Integrating genetic and epidemiological data allowed for investigative fact-checking and verified patient-reported sources of possible zoonotic spillover. These results demonstrate that rapid genetic sequencing combined with epidemiological data can inform responders of the mechanisms of viral spread, uncover novel transmission modes, and provide a deeper understanding of the outbreak, which is ultimately needed for infection prevention and control during outbreaks. FUNDING: WHO and US Centers for Disease Control and Prevention.


Assuntos
Ebolavirus , Doença pelo Vírus Ebola , Estados Unidos , Humanos , Animais , Doença pelo Vírus Ebola/epidemiologia , Doença pelo Vírus Ebola/prevenção & controle , Estudos Retrospectivos , República Democrática do Congo/epidemiologia , Filogenia , Teorema de Bayes , Ebolavirus/genética , Surtos de Doenças , Genômica , Zoonoses/epidemiologia
3.
PLoS One ; 18(11): e0288587, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37943886

RESUMO

Crimean-Congo Hemorrhagic fever (CCHF) is an important zoonotic disease transmitted to humans both by tick vectors and contact with fluids from an infected animal or human. Although animals are not symptomatic when infected, they are the main source of human infection. Uganda has reported sporadic human outbreaks of CCHF in various parts of the country since 2013. We designed a nationwide epidemiological study to investigate the burden of CCHF in livestock. A total of 3181 animals were sampled; 1732 cattle (54.4%), 1091 goats (34.3%), and 358 sheep (11.3%) resulting in overall livestock seropositivity of IgG antibodies against CCHF virus (CCHFV) of 31.4% (999/3181). Seropositivity in cattle was 16.9% and in sheep and goats was 48.8%. Adult and juvenile animals had higher seropositivity compared to recently born animals, and seropositivity was higher in female animals (33.5%) compared to male animals (24.1%). Local breeds had higher (36.8%) compared to exotic (2.8%) and cross breeds (19.3%). Animals that had a history of abortion or stillbirth had higher seropositivity compared to those without a history of abortion or stillbirth. CCHFV seropositivity appeared to be generally higher in northern districts of the country, though spatial trends among sampled districts were not examined. A multivariate regression analysis using a generalized linear mixed model showed that animal species, age, sex, region, and elevation were all significantly associated with CCHFV seropositivity after adjusting for the effects of other model predictors. This study shows that CCHFV is actively circulating in Uganda, posing a serious risk for human infection. The results from this study can be used to help target surveillance efforts for early case detection in animals and limit subsequent spillover into humans.


Assuntos
Vírus da Febre Hemorrágica da Crimeia-Congo , Febre Hemorrágica da Crimeia , Adulto , Gravidez , Masculino , Feminino , Animais , Humanos , Bovinos , Ovinos , Febre Hemorrágica da Crimeia/epidemiologia , Febre Hemorrágica da Crimeia/veterinária , Febre Hemorrágica da Crimeia/diagnóstico , Gado , Uganda/epidemiologia , Natimorto , Estudos Soroepidemiológicos , Cabras , Anticorpos Antivirais
4.
One Health ; 17: 100576, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38024282

RESUMO

Crimean-Congo Hemorrhagic Fever (CCHF) is a viral disease that can infect humans via contact with tick vectors or livestock reservoirs and can cause moderate to severe disease. The first human case of CCHF in Uganda was identified in 2013. To determine the geographic distribution of the CCHF virus (CCHFV), serosampling among herds of livestock was conducted in 28 Uganda districts in 2017. A geostatistical model of CCHF seroprevalence among livestock was developed to incorporate environmental and anthropogenic variables associated with elevated CCHF seroprevalence to predict CCHF seroprevalence on a map of Uganda and estimate the probability that CCHF seroprevalence exceeded 30% at each prediction location. Environmental and anthropogenic variables were also analyzed in separate models to determine the spatially varying drivers of prediction and determine which covariate class resulted in best prediction certainty. Covariates used in the full model included distance to the nearest croplands, average annual change in night-time light index, percent sand soil content, land surface temperature, and enhanced vegetation index. Elevated CCHF seroprevalence occurred in patches throughout the country, being highest in northern Uganda. Environmental covariates drove predicted seroprevalence in the full model more than anthropogenic covariates. Combination of environmental and anthropogenic variables resulted in the best prediction certainty. An understanding of the spatial distribution of CCHF across Uganda and the variables that drove predictions can be used to prioritize specific locations and activities to reduce the risk of future CCHF transmission.

5.
J Virol ; 97(10): e0059023, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37750724

RESUMO

IMPORTANCE: Ebola disease (EBOD) is a public health threat with a high case fatality rate. Most EBOD outbreaks have occurred in remote locations, but the 2013-2016 Western Africa outbreak demonstrated how devastating EBOD can be when it reaches an urban population. Here, the 2022 Sudan virus disease (SVD) outbreak in Mubende District, Uganda, is summarized, and the genetic relatedness of the new variant is evaluated. The Mubende variant exhibited 96% amino acid similarity with historic SUDV sequences from the 1970s and a high degree of conservation throughout the outbreak, which was important for ongoing diagnostics and highly promising for future therapy development. Genetic differences between viruses identified during the Mubende SVD outbreak were linked with epidemiological data to better interpret viral spread and contact tracing chains. This methodology should be used to better integrate discrete epidemiological and sequence data for future viral outbreaks.


Assuntos
Surtos de Doenças , Ebolavirus , Variação Genética , Doença pelo Vírus Ebola , Humanos , Surtos de Doenças/estatística & dados numéricos , Ebolavirus/química , Ebolavirus/classificação , Ebolavirus/genética , Doença pelo Vírus Ebola/epidemiologia , Doença pelo Vírus Ebola/transmissão , Doença pelo Vírus Ebola/virologia , Uganda/epidemiologia , Busca de Comunicante
6.
Emerg Infect Dis ; 29(9): 1886-1889, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37610188

RESUMO

Lymphocytic choriomeningitis virus is an underreported cause of miscarriage and neurologic disease. Surveillance remains challenging because of nonspecific symptomatology, inconsistent case reporting, and difficulties with diagnostic testing. We describe a case of acute lymphocytic choriomeningitis virus disease in a person living with HIV in Connecticut, USA, identified by using quantitative reverse transcription PCR.


Assuntos
Aborto Espontâneo , Infecções por HIV , Coriomeningite Linfocítica , Humanos , Feminino , Gravidez , Vírus da Coriomeningite Linfocítica , Connecticut/epidemiologia , Coriomeningite Linfocítica/diagnóstico , Infecções por HIV/complicações
8.
Emerg Infect Dis ; 29(8): 1663-1667, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37486231

RESUMO

We identified 2 fatal cases of persons infected with hantavirus in Arizona, USA, 2020; 1 person was co-infected with SARS-CoV-2. Delayed identification of the cause of death led to a public health investigation that lasted ≈9 months after their deaths, which complicated the identification of a vector or exposure.


Assuntos
COVID-19 , Doenças Transmissíveis , Infecções por Hantavirus , Orthohantavírus , Humanos , Arizona/epidemiologia , SARS-CoV-2 , Pandemias , Infecções por Hantavirus/diagnóstico , Infecções por Hantavirus/epidemiologia
9.
Am J Trop Med Hyg ; 109(3): 548-553, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37524326

RESUMO

In 2016, an outbreak of Rift Valley fever was reported in the Kabale District in Uganda for the first time in 48 years. Three human cases were confirmed by polymerase chain reaction, and subsequent serological investigations revealed an overall IgG seropositivity of 13% in humans and 13% in animals. In response to this reemergence, we designed a countrywide survey to determine the seropositivity of anti-Rift Valley fever virus (RVFV) IgG antibodies in livestock. Samples were collected from 27 districts and tested for RVFV anti-IgG antibodies. A total of 3,181 livestock samples were tested, of which 54.4% were cattle (1,732 of 3,181), 34.3% were goats (1,091 of 3,181), and 11.3% were sheep (358 of 3,181). Overall RVFV seropositivity was 6.9% (221 of 3,181). Seroprevalence was greater in cattle (10.7%) compared with goats (2.6%) and sheep (2.0%), among females (7.5%) compared with males (5.2%), and among adults (7.6%) compared with juveniles (4.9%) and nurslings (6.4%). Exotic breeds and animals with a history of abortion or stillbirth also had greater odds of RVFV seropositivity. Animals grazed under tethering and paddocking had greater RVFV seropositivity compared with animals that grazed communally, and livestock in the western and eastern regions had the greatest seroprevalence. In a multivariate regression model, animal species (odds ratio [OR], 6.4; 95% CI, 3.5-11.4) and age (OR, 2.3; 95% CI, 1.4-3.6) were associated significantly with RVFV seropositivity. This study could be important in developing risk-based surveillance for early outbreak detection to limit the spread of RVFV in both human and animal populations.


Assuntos
Coccidioidomicose , Febre do Vale de Rift , Vírus da Febre do Vale do Rift , Masculino , Adulto , Gravidez , Feminino , Animais , Humanos , Bovinos , Ovinos , Gado , Uganda/epidemiologia , Estudos Soroepidemiológicos , Cabras , Anticorpos Antivirais , Imunoglobulina G
11.
Am J Trop Med Hyg ; 108(5): 995-1002, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-36913925

RESUMO

Rift Valley fever (RVF) is a zoonotic disease of public health and economic importance. Uganda has reported sporadic outbreaks of RVF in both humans and animals across the country, especially in the southwestern part of the "cattle corridor" through an established viral hemorrhagic fever surveillance system. We report 52 human cases of laboratory-confirmed RVF from 2017 to 2020. The case fatality rate was 42%. Among those infected, 92% were males and 90% were adults (≥ 18 years). Clinical symptoms were characterized by fever (69%), unexplained bleeding (69%), headache (51%), abdominal pain (49%), and nausea and vomiting (46%). Most of the cases (95%) originated from central and western districts that are part of the cattle corridor of Uganda, where the main risk factor was direct contact with livestock (P = 0.009). Other predictors of RVF positivity were determined to be male gender (P = 0.001) and being a butcher (P = 0.04). Next-generation sequencing identified the predominant Ugandan clade as Kenya-2, observed previously across East Africa. There is need for further investigation and research into the effect and spread of this neglected tropical disease in Uganda and the rest of Africa. Control measures such as promoting vaccination and limiting animal-human transmission could be explored to reduce the impact of RVF in Uganda and globally.


Assuntos
Febre do Vale de Rift , Vírus da Febre do Vale do Rift , Adulto , Animais , Humanos , Masculino , Bovinos , Feminino , Febre do Vale de Rift/epidemiologia , Vírus da Febre do Vale do Rift/genética , Uganda/epidemiologia , Zoonoses/epidemiologia , Surtos de Doenças/prevenção & controle
12.
Am J Trop Med Hyg ; 108(4): 712-721, 2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-36878208

RESUMO

Uganda reported cases of Rift Valley fever virus (RVFV) for the first time in almost 50 years in 2016, following an outbreak of Rift Valley fever (RVF) that caused four human infections, two of which resulted in death. Subsequent outbreak investigation serosurveys found high seroprevalence of IgG antibodies without evidence of acute infection or IgM antibodies, suggesting the possibility of undetected RVFV circulation prior to the outbreak. After the 2016 outbreak investigation, a serosurvey was conducted in 2017 among domesticated livestock herds across Uganda. Sampling data were incorporated into a geostatistical model to estimate RVF seroprevalence among cattle, sheep, and goats. Variables resulting in the best fit to RVF seroprevalence sampling data included annual variability in monthly precipitation and enhanced vegetation index, topographic wetness index, log human population density percent increase, and livestock species. Individual species RVF seroprevalence prediction maps were created for cattle, sheep, and goats, and a composite livestock prediction was created based on the estimated density of each species across the country. Seroprevalence was greater in cattle compared with sheep and goats. Predicted seroprevalence was greatest in the central and northwestern quadrant of the country, surrounding Lake Victoria, and along the Southern Cattle Corridor. We identified areas that experienced conditions conducive to potential increased RVFV circulation in 2021 in central Uganda. An improved understanding of the determinants of RVFV circulation and locations with high probability of elevated RVF seroprevalence can guide prioritization of disease surveillance and risk mitigation efforts.


Assuntos
Febre do Vale de Rift , Vírus da Febre do Vale do Rift , Animais , Bovinos , Humanos , Ovinos , Febre do Vale de Rift/epidemiologia , Gado , Estudos Soroepidemiológicos , Uganda/epidemiologia , Anticorpos Antivirais , Cabras
13.
Emerg Infect Dis ; 28(11): 2326-2329, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36198315

RESUMO

Crimean-Congo hemorrhagic fever (CCHF) was detected in 2 refugees living in a refugee settlement in Kikuube district, Uganda. Investigations revealed a CCHF IgG seroprevalence of 71.3% (37/52) in goats within the refugee settlement. This finding highlights the need for a multisectoral approach to controlling CCHF in humans and animals in Uganda.


Assuntos
COVID-19 , Vírus da Febre Hemorrágica da Crimeia-Congo , Febre Hemorrágica da Crimeia , Refugiados , Animais , Humanos , Febre Hemorrágica da Crimeia/epidemiologia , Febre Hemorrágica da Crimeia/veterinária , Estudos Soroepidemiológicos , Uganda/epidemiologia , Pandemias , Surtos de Doenças , Cabras , Imunoglobulina G , Anticorpos Antivirais
14.
Emerg Infect Dis ; 28(11): 2290-2293, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36150455

RESUMO

Rift Valley fever, endemic or emerging throughout most of Africa, causes considerable risk to human and animal health. We report 7 confirmed Rift Valley fever cases, 1 fatal, in Kiruhura District, Uganda, during 2021. Our findings highlight the importance of continued viral hemorrhagic fever surveillance, despite challenges associated with the COVID-19 pandemic.


Assuntos
COVID-19 , Febre do Vale de Rift , Vírus da Febre do Vale do Rift , Animais , Humanos , Febre do Vale de Rift/epidemiologia , COVID-19/epidemiologia , Uganda/epidemiologia , Pandemias , Surtos de Doenças
15.
Health Secur ; 20(5): 394-407, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35984936

RESUMO

Uganda is highly vulnerable to public health emergencies (PHEs) due to its geographic location next to the Congo Basin epidemic hot spot, placement within multiple epidemic belts, high population growth rates, and refugee influx. In view of this, Uganda's Ministry of Health established the Public Health Emergency Operations Center (PHEOC) in September 2013, as a central coordination unit for all PHEs in the country. Uganda followed the World Health Organization's framework to establish the PHEOC, including establishing a steering committee, acquiring legal authority, developing emergency response plans, and developing a concept of operations. The same framework governs the PHEOC's daily activities. Between January 2014 and December 2021, Uganda's PHEOC coordinated response to 271 PHEs, hosted 207 emergency coordination meetings, trained all core staff in public health emergency management principles, participated in 21 simulation exercises, coordinated Uganda's Global Health Security Agenda activities, established 6 subnational PHEOCs, and strengthened the capacity of 7 countries in public health emergency management. In this article, we discuss the following lessons learned: PHEOCs are key in PHE coordination and thus mitigate the associated adverse impacts; although the functions of a PHEOC may be legalized by the existence of a National Institute of Public Health, their establishment may precede formally securing the legal framework; staff may learn public health emergency management principles on the job; involvement of leaders and health partners is crucial to the success of a public health emergency management program; subnational PHEOCs are resourceful in mounting regional responses to PHEs; and service on the PHE Strategic Committee may be voluntary.


Assuntos
Surtos de Doenças , Saúde Pública , Humanos , Uganda/epidemiologia , Surtos de Doenças/prevenção & controle , Administração em Saúde Pública , Saúde Global
16.
N Engl J Med ; 386(24): 2283-2294, 2022 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-35704480

RESUMO

BACKGROUND: In June 2019, the Bolivian Ministry of Health reported a cluster of cases of hemorrhagic fever that started in the municipality of Caranavi and expanded to La Paz. The cause of these cases was unknown. METHODS: We obtained samples for next-generation sequencing and virus isolation. Human and rodent specimens were tested by means of virus-specific real-time quantitative reverse-transcriptase-polymerase-chain-reaction assays, next-generation sequencing, and virus isolation. RESULTS: Nine cases of hemorrhagic fever were identified; four of the patients with this illness died. The etiologic agent was identified as Mammarenavirus Chapare mammarenavirus, or Chapare virus (CHAPV), which causes Chapare hemorrhagic fever (CHHF). Probable nosocomial transmission among health care workers was identified. Some patients with CHHF had neurologic manifestations, and those who survived had a prolonged recovery period. CHAPV RNA was detected in a variety of human body fluids (including blood; urine; nasopharyngeal, oropharyngeal, and bronchoalveolar-lavage fluid; conjunctiva; and semen) and in specimens obtained from captured small-eared pygmy rice rats (Oligoryzomys microtis). In survivors of CHHF, viral RNA was detected up to 170 days after symptom onset; CHAPV was isolated from a semen sample obtained 86 days after symptom onset. CONCLUSIONS: M. Chapare mammarenavirus was identified as the etiologic agent of CHHF. Both spillover from a zoonotic reservoir and possible person-to-person transmission were identified. This virus was detected in a rodent species, O. microtis. (Funded by the Bolivian Ministry of Health and others.).


Assuntos
Arenavirus do Novo Mundo , Febre Hemorrágica Americana , RNA Viral , Roedores , Animais , Arenavirus do Novo Mundo/genética , Arenavirus do Novo Mundo/isolamento & purificação , Bolívia/epidemiologia , Infecção Hospitalar/transmissão , Infecção Hospitalar/virologia , Transmissão de Doença Infecciosa , Febre Hemorrágica Americana/complicações , Febre Hemorrágica Americana/genética , Febre Hemorrágica Americana/transmissão , Febre Hemorrágica Americana/virologia , Febres Hemorrágicas Virais/genética , Febres Hemorrágicas Virais/transmissão , Febres Hemorrágicas Virais/virologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Reação em Cadeia da Polimerase , RNA Viral/genética , RNA Viral/isolamento & purificação , Ratos/virologia , Roedores/virologia , Zoonoses Virais/transmissão , Zoonoses Virais/virologia
17.
Sci Rep ; 12(1): 8588, 2022 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-35597789

RESUMO

Effectively preventing and controlling zoonotic diseases requires a One Health approach that involves collaboration across sectors responsible for human health, animal health (both domestic and wildlife), and the environment, as well as other partners. Here we describe the Generalizable One Health Framework (GOHF), a five-step framework that provides structure for using a One Health approach in zoonotic disease programs being implemented at the local, sub-national, national, regional, or international level. Part of the framework is a toolkit that compiles existing resources and presents them following a stepwise schematic, allowing users to identify relevant resources as they are required. Coupled with recommendations for implementing a One Health approach for zoonotic disease prevention and control in technical domains including laboratory, surveillance, preparedness and response, this framework can mobilize One Health and thereby enhance and guide capacity building to combat zoonotic disease threats at the human-animal-environment interface.


Assuntos
Saúde Única , Animais , Animais Selvagens , Fortalecimento Institucional , Laboratórios , Zoonoses/epidemiologia , Zoonoses/prevenção & controle
18.
Am J Trop Med Hyg ; 2022 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-35378505

RESUMO

Crimean-Congo hemorrhagic fever (CCHF) is a highly fatal zoonotic disease endemic to Kazakhstan. Previous work estimated the seroprevalence of CCHF virus (CCHFV) among livestock owners in the Zhambyl region of southern Kazakhstan at 1.2%. To estimate CCHFV seroprevalence among cattle and sheep, we selected 15 villages with known history of CCHFV circulation (endemic) and 15 villages without known circulation (nonendemic) by cluster sampling with probability proportional to livestock population size. We collected whole blood samples from 521 sheep and 454 cattle from randomly selected households within each village and collected ticks found on the animals. We tested livestock blood for CCHFV-specific IgG antibodies by ELISA; ticks were screened for CCHFV RNA by real-time reverse transcription polymerase chain reaction and CCHFV antigen by antigen-capture ELISA. We administered questionnaires covering animal demographics and livestock herd characteristics to an adult in each selected household. Overall weighted seroprevalence was 5.7% (95% CI: 3.1, 10.3) among sheep and 22.5% (95% CI: 15.8, 31.2) among cattle. CCHFV-positive tick pools were found on two sheep (2.4%, 95% CI: 0.6, 9.5) and three cattle (3.8%, 95% CI: 1.2, 11.5); three CCHFV-positive tick pools were found in nonendemic villages. Endemic villages reported higher seroprevalence among sheep (15.5% versus 2.8%, P < 0.001) but not cattle (25.9% versus 20.1%, P = 0.42). Findings suggest that the current village classification scheme may not reflect the geographic distribution of CCHFV in Zhambyl and underscore that public health measures must address the risk of CCHF even in areas without a known history of circulation.

19.
MMWR Morb Mortal Wkly Rep ; 71(8): 290-292, 2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35202354

RESUMO

On December 19, 2019, the Food and Drug Administration (FDA) approved rVSVΔG-ZEBOV-GP Ebola vaccine (ERVEBO, Merck) for the prevention of Ebola virus disease (EVD) caused by infection with Ebola virus, species Zaire ebolavirus, in adults aged ≥18 years. In February 2020, the Advisory Committee on Immunization Practices (ACIP) recommended preexposure vaccination with ERVEBO for adults aged ≥18 years in the United States who are at highest risk for potential occupational exposure to Ebola virus because they are responding to an outbreak of EVD, work as health care personnel at federally designated Ebola treatment centers in the United States, or work as laboratorians or other staff members at biosafety level 4 facilities in the United States (1).


Assuntos
Vacinas contra Ebola/administração & dosagem , Doença pelo Vírus Ebola/prevenção & controle , Exposição Ocupacional/prevenção & controle , Vacinação , Adulto , Comitês Consultivos , Centers for Disease Control and Prevention, U.S. , Pessoal de Saúde , Diretrizes para o Planejamento em Saúde , Humanos , Pessoal de Laboratório , Estados Unidos/epidemiologia
20.
PLoS Negl Trop Dis ; 16(2): e0010205, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35192613

RESUMO

Uganda established a domestic Viral Hemorrhagic Fever (VHF) testing capacity in 2010 in response to the increasing occurrence of filovirus outbreaks. In July 2018, the neighboring Democratic Republic of Congo (DRC) experienced its 10th Ebola Virus Disease (EVD) outbreak and for the duration of the outbreak, the Ugandan Ministry of Health (MOH) initiated a national EVD preparedness stance. Almost one year later, on 10th June 2019, three family members who had contracted EVD in the DRC crossed into Uganda to seek medical treatment. Samples were collected from all the suspected cases using internationally established biosafety protocols and submitted for VHF diagnostic testing at Uganda Virus Research Institute. All samples were initially tested by RT-PCR for ebolaviruses, marburgviruses, Rift Valley fever (RVF) virus and Crimean-Congo hemorrhagic fever (CCHF) virus. Four people were identified as being positive for Zaire ebolavirus, marking the first report of Zaire ebolavirus in Uganda. In-country Next Generation Sequencing (NGS) and phylogenetic analysis was performed for the first time in Uganda, confirming the outbreak as imported from DRC at two different time point from different clades. This rapid response by the MoH, UVRI and partners led to the control of the outbreak and prevention of secondary virus transmission.


Assuntos
Ebolavirus , Vírus da Febre Hemorrágica da Crimeia-Congo , Febre Hemorrágica da Crimeia , Doença pelo Vírus Ebola , Animais , República Democrática do Congo/epidemiologia , Surtos de Doenças/prevenção & controle , Ebolavirus/genética , Febre Hemorrágica da Crimeia/epidemiologia , Humanos , Filogenia , Uganda/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...